sábado, dezembro 09, 2017

NEUROCIÊNCIA COMPUTACIONAL

A neurociência computacional (ou neurociência teórica) é a área da neurociência que tem por objetivo o estudo teórico do sistema nervoso e das funções cerebrais usando modelos matemáticos e computacionais.
A palavra "computacional" no nome da área tem dois sentidos: um é para indicar que o computador é utilizado como ferramenta para a construção de modelos; o outro é para indicar que ela procura entender e modelar as "computações" feitas pelo cérebro, isto é, como o cérebro representa e processa informação.
Por sua própria natureza, a neurociência computacional é uma ciência interdisciplinar que combina diferentes campos do saber, como a neurobiologia, a matemática, a ciência da computação, a física, a engenharia elétrica, a ciência cognitiva, a psicologia e a filosofia.
A neurociência computacional é distinta do conexionismo e de disciplinas como aprendizado de máquina, redes neurais artificiais e teoria da aprendizagem computacional, na medida em que enfatiza descrições funcionais e biologicamente plausíveis de neurônios e sistemas neurais, sua fisiologia e dinâmica de aprendizagem. Para atingir seus objetivos, a neurociência computacional utiliza modelos matemáticos e computacionais de células, circuitos e redes neurais, procurando integrar dados experimentais obtidos com as mais diferentes técnicas – desde o nível microscópico, acessível por estudos moleculares e celulares, até o nível sistêmico, acessível por estudos comportamentais – para construir um arcabouço teórico coerente e quantitativo da estrutura e da função do sistema nervoso, tanto em condições normais como patológicas.

Modelagem de neurônio único.
Mesmo neurônios individuais têm características biofísicas complexas e podem executar cálculos.[36] O modelo original de Hodgkin e Huxley somente emprega duas correntes sensíveis à voltagem (canais iônicos sensíveis à voltagem são moléculas de glicoproteína que se estendem através da bicapa lipídica, permitindo que os íons atravessem sob certas condições através do axolema), a de ação rápida de sódio e a para dentro de potássio. Embora bem-sucedido em prever as características qualitativas e temporais do potencial de ação, no entanto, não consegue prever uma série de características importantes, como a adaptação e desvio. 
Os cientistas agora acreditam que há uma grande variedade de correntes sensíveis à voltagem e as implicações das dinâmicas, modulações e sensibilidades diferentes destas correntes é um tópico importante da neurociência computacional.
As funções computacionais de dendritos complexos também estão sob intensa investigação. Há uma vasta literatura a respeito de como diferentes correntes interagem com as propriedades geométricas dos neurônios.
Alguns modelos também estão rastreando caminhos bioquímicos em escalas muito pequenas, tais como espinhos ou fendas sinápticas.
Há muitos pacotes de software, tais como GENESIS e NEURON, que permitem uma modelagem rápida e sistemática de neurônios realistas. Blue Brain, um projeto fundado por Henry Markram da École Polytechnique Fédérale de Lausanne, visa construir uma simulação biofisicamente detalhada de uma coluna cortical no supercomputador Blue Gene.
Um problema no campo é que as descrições detalhadas de neurônios são caras e isso pode prejudicar as investigações de redes realistas, onde muitos neurônios precisam ser simulados. Assim, os pesquisadores que estudam grandes circuitos neurais normalmente representam cada neurônio e sinapse simplesmente, ignorando muito do detalhe biológico. Isso é problemático, pois há evidências de que a riqueza das propriedades biofísicas na escala de neurônio único pode fornecer mecanismos que servem como blocos de construção para a dinâmica da rede.
Por isso, há um incentivo para produzir modelos de neurônios simplificados que podem reter a fidelidade biológica significativa a uma baixa sobrecarga computacional. Algoritmos foram desenvolvidos para produzir modelos de neurônios de execução fiel, mais rápida e simplificada como substitutos para modelos de neurônios detalhados computacionalmente caros.


Desenvolvimento, padronização axonal, e orientação
Como os axônios e dendritos se formam durante o desenvolvimento? Como os neurônios migrar para a posição correta nos sistemas central e periférico? Como as sinapses se formam? Sabe-se a partir da biologia molecular que partes distintas do sistema nervoso liberam sinais químicos distintos, de fatores de crescimento a hormônios que modulam e influenciam o crescimento e desenvolvimento de ligações funcionais entre os neurônios.
Investigações teóricas sobre a formação e padronização de conexão sináptica e morfologia são ainda incipientes. Uma hipótese que tem atraído recentemente alguma atenção é a hipótese da fiação mínima, a qual postula que a formação de axônios e dendritos minimiza efetivamente a alocação de recursos, mantendo o máximo armazenamento de informação.
Processamento sensorial
Os primeiros modelos de processamento sensorial dentro de um quadro teórico são creditados Horace Barlow. Um tanto semelhante à hipótese de fiação mínima descrito na secção anterior, Barlow compreendia o processamento dos sistemas sensoriais iniciais como sendo uma forma de codificação eficiente, onde os neurônios codificavam informação o que minimizava o número de spikes. O trabalho experimental e computacional, desde então, apoiaram esta hipótese, de uma forma ou de outra.
A pesquisa atual no processamento sensorial é dividida entre uma modelagem biofísico de diferentes subsistemas e uma modelagem mais teórica da percepção. Os modelos atuais de percepção sugerem que o cérebro executa alguma forma de inferência Bayesiana e integração das diferentes informações sensoriais na geração de nossa percepção do mundo físico.
Memória e plasticidade sináptica
Modelos mais antigos de memória são principalmente baseados nos postulados da aprendizagem Hebbiana. Modelos biologicamente relevantes, tais como a rede de Hopfield foram desenvolvidos para lidar com as propriedades associativas, ao invés de conteúdo endereçável, estilo de memória que ocorrem em sistemas biológicos. Estas tentativas focam principalmente na formação da memória a médio e longo prazo, localizada no hipocampo. Todos os modelos de memória de trabalho, contando com teorias de oscilações de rede e atividade persistente, foram construídos para capturar algumas características do córtex pré-frontal da memória relacionada ao contexto.
Um dos principais problemas na memória neurofisiológica é como ela é mantida e mudada através de múltiplas escalas de tempo. Sinapses instáveis são fáceis de sequenciar, mas também propensas a perturbação estocástica. Sinapses estáveis não esquecem tão facilmente, mas elas também são mais difíceis de se consolidar. Uma hipótese computacional recente envolve cascatas de plasticidade que permitem às sinapses funcionarem em múltiplas escalas de tempo.
Modelos estereoquimicamente detalhados da sinapse à base de receptor de acetilcolina com o método Monte Carlo, trabalhando em uma escala de tempo de microssegundos, foram construídos.
É provável que nas próximas décadas as ferramentas computacionais contribuirão muito para a compreensão de como as sinapses funcionam e mudam em relação ao estímulo externo.
Comportamentos de redes
Neurônios biológicos são ligados uns aos outros de uma forma complexa e recorrente. Essas conexões são, ao contrário da maioria das redes neurais artificiais, esparsas e geralmente específicas. Não se sabe como a informação é transmitida através de tais redes esparsamente conectadas.
As interações dos neurônios em uma pequena rede podem ser muitas vezes reduzidas a modelos simples como o modelo de Ising. A mecânica estatística de tais sistemas simples é bem caracterizada teoricamente. Existem evidências recentes que sugerem que a dinâmica de redes neuronais arbitrárias pode ser reduzida para as interações de pares.
Não se sabe, contudo, se tal dinâmica descritiva transmite qualquer função computacional importante. Com o surgimento da microscopia de dois fótons e da imagem de cálcio, agora tem-se métodos experimentais poderosos com os quais testar as novas teorias sobre redes neuronais.
Em alguns casos, as interações complexas entre os neurônios inibitórios e excitatórios podem ser simplificadas utilizando a teoria de campo médio, o que dá origem ao modelo de população de redes neurais. Enquanto muitos neurocientistas preferem modelos com reduzida complexidade, outros argumentam que descobrir relações funcionais estruturais depende de incluir o quanto for possível da estrutura neuronal e da rede. Modelos deste tipo são normalmente construídos em grandes plataformas de simulação como GENESIS ou NEURON. Houve algumas tentativas de fornecer métodos unificados que conectassem e integrassem estes níveis de complexidade.
Cognição, discriminação e aprendizagem
A modelagem computacional de funções cognitivas superiores só começou recentemente. Dados experimentais vem principalmente de gravação com primatas. O lobo frontal e lobo parietal funcionam como integradores de informações de várias modalidades sensoriais. Há algumas ideias preliminares sobre como circuitos funcionais mutuamente inibitórios nessas áreas podem realizar computação biologicamente relevante.
O cérebro parece ser capaz de discriminar e se adaptar particularmente bem em certos contextos. Por exemplo, os seres humanos parecem ter uma enorme capacidade para memorizar e reconhecer rostos. Um dos objetivos fundamentais da neurociência computacional é dissecar como os sistemas biológicos realizam estas computações complexas de forma eficiente e potencialmente replicar esses processos na construção de máquinas inteligentes.
Os princípios organizacionais de grande escala do cérebro são iluminados por muitos campos, incluindo biologia, psicologia e prática clínica. A neurociência integrativa tenta consolidar estas observações através de modelos e bancos de dados de medidas comportamentais e gravações. Estas são as bases para algumas das modelagens quantitativas da atividade cerebral em grande escala.
O Computational Representational Understanding of Mind (CRUM) é mais uma tentativa de modelar a cognição humana através de processos simulados como sistemas baseados em regras adquiridas e a manipulação de representações visuais na tomada de decisão.
Consciência
Um dos objetivos finais da psicologia/neurociência é ser capaz de explicar a experiência cotidiana da vida consciente. Francis Crick e Christof Koch fizeram algumas tentativas na formulação de um quadro coerente para o trabalho futuro em correlatos neurais da consciência (NCC), embora muito do trabalho neste campo permanece especulativo.
Neurociência clínica computacional
É um campo que reúne especialistas em neurociência, neurologia, psiquiatria, ciências da decisão e modelagem computacional para definir quantitativamente e investigar problemas em doenças neurológicas e psiquiátricas, e treinar cientistas e médicos que desejam aplicar esses modelos para diagnóstico e tratamento.

Postagem em destaque

O que faz um Analista de Sistemas?

  Os analistas de sistemas fazem análise de requisitos de software, hardware para especificar um novo sistema ou como um sistema atual pode ...